热门
关于汽车的入门知识,你知道多少?——申精!高质量!
1 30 发布于 2017-03-22 15:25:50 只看楼主 热门标准
点击查看热门标准,热门算法维度通过账号健康度、浏览、评论、点赞、收藏、转发、反作弊等进行综合评判
修改帖子

本贴内容收集于网络,由本人整理发表。

人靠衣装,车也要靠“车装”,漂亮的长相能最直接地吸引我们的眼球,然而更重要的是漂亮长相下的“骨架”,因为它才是保护驾乘人员的关键。车身内部构造的不同,直接影响汽车的安全性。什么是承载式车身?非承载式车身?车身溃缩吸能?本贴就来浅谈一下汽车车身的结构。

● 哪些车是两厢车?三厢车?

日常生活中我们经常会听到两厢车、三厢车这个词,它们到底是怎么来划分的:通常我们把轿车的发动机室、驾驶室、行李箱分别称为轿车的“厢”,如这三个厢是相互独立的,就称为三厢车。如果驾驶室和行李箱是结合在一起的,则称为两厢车。


● 车身规格

在买车时要了解一款车的空间,当然要看车的总长、轴距等参数。现在各汽车厂商对于车身规格的标注,基本上都统一了,如车身总长、轴距、轮距、前悬、后悬等,有些参数如车身总宽、总高会略有不同。



● 汽车通过性能指标

在了解一款越野车时,会经常看到一系列的参数,如最大爬坡度、最大侧倾角、最小离地间隙等等。下面我们用图来直观展示这些参数的含义。




● 非承载式车身是怎样的?

采用非承载式车身的汽车,其发动机、传动系统、车身的总成部分是固定在一个刚性车架上,车架通过前后悬挂装置与车轮相连。

再者,非承载式车身有根大梁贯穿整个车身结构,底盘的强度较高,抗颠簸性能好。就算车的四个车轮受力不均匀,也是由车架承受,不会传递到车身,所以车身不容易扭曲变形。



非承载式车身比较笨重、质量大、高度高,多用于货车、客车和越野车上。不过由于非承载式车身具有较好的平稳性和安全性,有些高级轿车也使用。

● 承载式车身?

承载式车身汽车的整个车身是为一体的,没有贯穿整体的大梁,发动机、传动系统、前后悬挂等部件都装配到车身上,车身负载通过悬挂装置传给车轮。

承载式车身的汽车平直路上行驶很平稳、固有频率低、噪声小、重量轻,广泛应用于轿车上。当然底盘的强度是不及有大梁结构的非承载式车身,在车的四个车轮受力不均匀时,车身会发生变形。



● 车身为什么要采用不同的材料?

并不是车身所有的材料强度越高越好,要看用在什么地方。如驾乘室的框架(如横梁、纵梁、ABC柱等),为了使驾车室的空间尽量不变形(保证驾乘人员安全),就必须采用高强度的材料。如车前和尾部的材料(如引擎盖板、翼子板等),为了能够吸收撞击力,可以使用强度相对较低的材料。



● 车门防撞梁有何作用?

车门防撞梁是减少驾乘人员受侧面撞击的最重要防线。因为在受到侧面撞击时,驾乘人员的身体与车门间没有过多的空间作为缓冲(不同正面撞击,驾乘人员前方还有一定的空间作为缓冲),直接会收到外力的侵害。所以防撞梁的强度越高,对驾乘人员的防护就越好。


● 什么是溃缩吸能?

在汽车碰撞中,重要的是保护车内人员的安全,所以在碰撞中驾乘室的变形越小就越好。汽车在设计时考虑到这一点,在汽车碰撞时,让一部分机构先溃缩,吸收一部分的撞击能量,从而减少传递到驾乘室的撞击力。


● 车身冲击力转移?

同样是为了保护驾乘室中的人员,在汽车受到撞击时,利用特殊设计的车身,将撞击力分散、转移,从而减少传递到驾乘室的撞击力,达到保护车内乘员的目的。



● 什么事汽车悬挂?汽车悬挂有哪几种?

汽车悬挂一般来说大致分为:独立悬挂,非独立悬挂,空气悬挂,电磁悬挂

● 独立悬挂,

独立悬挂就是车辆的单个车轮都有自己的一套系统,他的跳动不会影响其他三个车轮。当然,独立悬架还有很多细分,比如横臂式、纵臂式、多连杆式、麦弗逊式等等太多了,这里就不一一细说了。


独立悬挂的优点:

质量轻,减少了车身收到的冲击,并且提高了车轮的地面附着力。

可以使发动机的位置降低,降低了车的重心,从而车辆行驶更加稳定。

由于左右轮并无干扰,所以在行驶时可以减少车辆的跳动和转弯的倾斜,增加了舒适性和操控性。

由于每个轮都有自己的悬挂系统,所以在应对越野路面时,独立悬挂会更好。

独立悬挂的缺点:

独立悬挂的结构比非独立悬挂的结构复杂的多,所以在制造、维修上的成本会更多。并且由于占用的体积较大,所以会影响车内的乘坐空间。

● 空气悬挂,

空气悬挂在咱们一般的日常用车上不常见,普遍都存在一些高档的越野车型和改装车上(特别是“低趴”风格的改装车)。他的工作原理就是利用空气压缩机形成压缩空气,并将压缩空气送到弹簧和减震器的空气室中,从而改变车身的高度。


空气悬挂的优点:

1.相比传统的悬挂,空气悬挂的舒适性会好很多,行驶在颠簸的路面上时,乘坐的感受会更好,更平稳,并且可以调节各种驾驶模式,舒适和运动随你选。

2.可以满足各种路况下的需求,这点是普通悬挂无法比拟的。

空气悬挂的缺点:

成本高,这也就是为什么只会在豪华车上出现。

结构复杂,并且对于气密性有很高的要求。所以在使用耐用性上还有待商榷,不过相信今后技术的发展,这种优秀的悬挂会普及开来的。

● 非独立悬挂,

非独立悬挂就是两侧车轮由一根整体式车架相连,车轮连通车桥一起通过弹性悬架系统悬架在车架或车身下面。


非独立悬挂的优点:

车在行驶时,左右轮在弹跳的时候会受到牵连,减小了轮胎的变化量,可以使轮胎的磨损变小。

由于结构比较简单,所以在制造、维修和保养上面费用会比较低。(想想大众就知道了)

占用的空间小,可以腾出车内乘坐空间。(拿高尔夫和福克斯一比就知道了)

非独立悬挂的缺点:

由于左右轮会互相牵连,所以在行驶的时候舒适度会降低,最明显的是左右晃动(后排乘客应该体会最深),操控性也会降低。

● 电磁悬挂,

顾名思义,电磁悬挂是利用电磁反映的一种独立悬挂。



电磁悬挂的优点:

结构简单,功耗低,可以直接通过普通低伏电供电,并且可以对悬挂阻尼进行精确控制。

工作范围宽,可以在-50℃--140℃内工作。

由于悬挂的运动部件少,所以产生的噪音会小很多。

和空气悬挂一样,进行不同模式调节,体验不同驾驶感受。

电磁悬挂的缺点:

不用说了,还是成本问题,不过相信在不久的以后,随着科技的发展,这些现在看起来还很高大上的系统也会进入到普通人群中的。

● 常见的发动机构造有哪几种?

一般的汽车都是以四缸和六缸发动机居多,既然发动机的动力主要是来源于气缸,那是不是气缸越多就越好呢?其实不然,随着汽缸数的增加,发动机的零部件也相应的增加,发动机的结构会更为复杂,这也降低发动机的可靠性,另外也会提高发动机制造成本和后期的维护费用。所以,汽车发动机的汽缸数都是根据发动机的用途和性能要求进行综合权衡后做出的选择。像V12型发动机、W12型发动机和W16型发动机只运用于少数的高性能汽车上。



汽车的动力源泉就是发动机,而发动机的动力则来源于气缸内部。发动机气缸就是一个把燃料的内能转化为动能的场所,可以简单理解为,燃料在汽缸内燃烧,产生巨大压力推动活塞上下运动,通过连杆把力传给曲轴,最终转化为旋转运动,再通过变速器和传动轴,把动力传递到驱动车轮上,从而推动汽车前进。

● V型发动机结构

其实V型发动机,简单理解就是将相邻气缸以一定的角度组合在一起,从侧面看像V字型,就是V型发动机。V型发动机相对于直列发动机而言,它的高度和长度有所减少,这样可以使得发动机盖更低一些,满足空气动力学的要求。而V型发动机的气缸是成一个角度对向布置的,可以抵消一部分的震动,但是不好的是必须要使用两个气缸盖,结构相对复杂。虽然发动机的高度减低了,但是它的宽度也相应增加,这样对于固定空间的发动机舱,安装其他装置就不容易了。


● W型发动机结构

将V型发动机两侧的气缸再进行小角度的错开,就是W型发动机了。W型发动机相对于V型发动机,优点是曲轴可更短一些,重量也可轻化些,但是宽度也相应增大,发动机舱也会被塞得更满。缺点是W型发动机结构上被分割成两个部分,结构更为复杂,在运作时会产生很大的震动,所以只有在少数的车上应用。



● 水平对置发动机结构

水平对置发动机的相邻气缸相互对立布置(活塞的底部向外侧),两气缸的夹角为180°,不过它与180°V型发动机还是有本质的区别的。水平对置发动机与直列发动机类似,是不共用曲柄销的(也就是说一个活塞只连一个曲柄销),而且对向活塞的运动方向是相反的,但是180°V型发动机则刚好相反。水平对置发动机的优点是可以很好的抵消振动,使发动机运转更为平稳;重心低,车头可以设计得更低,满足空气动力学的要求;动力输出轴方向与传动轴方向一致,动力传递效率较高。缺点:结构复杂,维修不方便;生产工艺要求苛刻,生产成本高,在知名品牌的轿车中只有保时捷和斯巴鲁还在坚持使用水平对置发动机。


● 发动机为什么能源源不断提供动力?

发动机之所以能源源不断的提供动力,得益于气缸内的进气、压缩、做功、排气这四个行程的有条不紊地循环运作。



进气行程,活塞从气缸内上止点移动至下止点时,进气门打开,排气门关闭,新鲜的空气和汽油混合气被吸入气缸内。

压缩行程,进排气门关闭,活塞从下止点移动至上止点,将混合气体压缩至气缸顶部,以提高混合气的温度,为做功行程做准备。

做功行程,火花塞将压缩的气体点燃,混合气体在气缸内发生“爆炸”产生巨大压力,将活塞从上止点推至下止点,通过连杆推动曲轴旋转。

排气行程,活塞从下止点移至上止点,此时进气门关闭,排气门打开,将燃烧后的废气通过排气歧管排出气缸外。

发动机能产生动力其实是源于气缸内的“爆炸力”。在密封气缸燃烧室内,火花塞将一定比例汽油和空气的混合气体在合适的时刻里瞬间点燃,就会产生一个巨大的爆炸力,而燃烧室是顶部是固定的,巨大的压力迫使活塞向下运动,通过连杆推动曲轴,在通过一系列机构把动力传到驱动轮上,最终推动汽车。
要想气缸内的“爆炸”威力更大,适时的点火就非常重要了,而气缸内的火花塞就是扮演“引爆”的角色。其实火花塞点火的原理有点类似雷电,火花塞头部有中心电极和侧电极(相于两朵带相反极性离子的云),两个电极之间有个很小的间隙(称为点火间隙),当通电时能产生高达1万多伏的电火花,可以瞬间“引爆”气缸内的混合气体。
要想气缸内不断的发生“爆炸”,必须不断的输入新的燃料和及时排出废气,进、排气门在这过程中就扮演了重要角色。进、排气门是由凸轮控制的,适时的执行“开门”和“关门”这两个动作。为什么看到的进气门都会比排气门大一些呢?因为一般进气是靠真空吸进去的,排气是挤压将废气推出,所以排气相对比进气容易。为了获得更多的新鲜空气参与燃烧,因而进气门需要弄大点以获得更多的进气。
如果发动机有多个气门的话,高转速时进气量大、排气干净,发动机的性能也比较好(类似一个电影院,门口多的话,进进出出就方便多了)。但是多气门设计较复杂,尤其是气门的驱动方式、燃烧室构造和火花塞位置都需要进行精密的布置,这样生产工艺要求高,制造成本自然也高,后期的维修也困难。所以气门数不宜过多,常见的发动机每个气缸有4个气门(2进2出)。


● 转子发动机是怎样的?

转子发动机也称三角活塞旋转式发动机,与我们常见的往复式发动机不同的是,它是一种通过三角活塞在气缸内做旋转运动的内燃机。

● 转子发动机是怎样的?

转子发动机也称三角活塞旋转式发动机,与我们常见的往复式发动机不同的是,它是一种通过三角活塞在气缸内做旋转运动的内燃机。


转子发动机的活塞是一个扁平三角形,气缸是一个扁盒子,活塞偏心地安装在空腔内。汽油燃烧产生的膨胀力作用在转子的侧面上,从而将三角形转子的三个面之一推向偏心轴的中心,在向心力和切向力的作用下,活塞在气缸内做行星旋转运动。

在这过程中,工作室的容积随着活塞转动发生周期性的变化,从而完成进气、压缩、做功、排气这四个行程。活塞每旋转一次就做功一次,与一般的四冲程发动机每转两圈才做一次功,具有高马力容积等优点。

● 再说一下混动汽车吧,

现在的混合动力汽车一般为油电混合,就是利用燃油发动机和电动机共同为汽车提供动力。混合动力车上的装置可以在车辆减速、制动、下坡时回收能量,并通过电动机为汽车提供动力,因此它的油耗比较低,但汽车价格相对较高。


根据电动机所起作用的大小,可以分为强混合动力和轻混合动力两种。强混合动力车主要采用大功率电动机,尽量缩小发动机的排量。在起步或低速时,可以单纯依靠电力行驶,如在车辆重载、加速等情况下,发动机才会介入工作。

轻混合动力车的主要驱动力是燃油发动机,而电动机只是作为辅助作用,不能单独驱动汽车。但能在车辆减速、制动时进行能量回收,实现混合动力的最大效率。


● 变速器有哪些种类??

汽车变速器按照操控方式可分为手动变速器和自动变速器。常见的自动变速器主要有三种,分别是液力自动变速器(AT)、机械无级自动变速器(CVT)、双离合器变速器(DSG)。


手动变速器(Manual Transmission,简称MT),就是必须通过用手拨动变速器杆,才能改变传动比的变速器。手动变速器主要由壳体、传动组件(输入输出轴、齿轮、同步器等)、操纵组件(换挡拉杆、拨叉等)。
手动变速器的工作原理,就是通过拨动变速杆,切换中间轴上的主动齿轮,通过大小不同的齿轮组合与动力输出轴结合,从而改变驱动轮的转矩和转速。先看一下简化的手动变速器(2档)的构造图吧。


发动机的动力输入轴是通过一根中间轴,间接与动力输出轴连接的。中间轴的两个齿轮(红色)与动力输出轴上的两个齿轮(蓝色)是随着发动机输出一起转动的。但是如果没有同步器(紫色)的接合,两个齿轮(蓝色)只能在动力输出轴上空转(即不会带动输出轴转动)。图中同步器位于中间状态,相当于变速器挂了空档。
当变速杆向左移动,使同步器向右移动与齿轮接合,发动机动力通过中间轴的齿轮,将动力传递给动力输出轴。

一般的手动变速器都有好几个档位,可以理解为在原来的基础上添加了几组齿轮,其实原理都是一样的。如当挂上1挡时,实际上是将(1、2挡同步器)向左移动使同步器与1挡从动齿接合,将动力传递到输出轴。细心的朋友会发现,R档(倒车档)的主动齿轮和从动齿轮中夹了一个中间齿轮,就是通过这个齿轮实现汽车的倒退行驶。

说到变速箱那就必须要说说同步器,那同步器的作用是怎样的呢?

变速器在进行换档操作时,尤其是从高档向低档的换档很容易产生轮齿或花键齿间的冲击。为了避免齿间冲击,在换档装置中都设置同步器。

同步器有常压式和惯性式两种,目前大部分同步式变速器上采用的是惯性同步器,它主要由接合套、同步锁环等组成,主要是依靠摩擦作用实现同步。

当同步锁环内锥面与待接合齿轮齿圈外锥面接触后,在摩擦力矩的作用下齿轮转速迅速降低(或升高)到与同步锁环转速相等,两者同步旋转,齿轮相对于同步锁环的转速为零,因而惯性力矩也同时消失,这时在作用力的推动下,接合套不受阻碍地与同步锁环齿圈接合,并进一步与待接合齿轮的齿圈接合而完成换档过程。

同步器结构如下图。


● 常见的3种自动变速箱原理解析,

众所周知,汽车变速箱可以分为自动变速箱和手动变速箱。但并不是所有的人都能够完整地说出自动变速箱的种类以及各种类自动变速箱究竟在运作原理上有什么不同。那我们就来剖析一下AT、CVT、DSG这三种自动变速箱的运作原理。

现在自动变速箱一般都是液力变矩器式自动变速箱,也就是俗称的“AT”自动变速箱。它主要由两大部分构成:1、和发动机飞轮连接的液力变矩器。2、紧跟在液力变矩器后方的变速机构
液力变矩器一般是由泵轮、定叶轮、涡轮以及锁止离合器组成的。锁止离合器的作用是当车速超过一定速度时,采用锁止离合器将发动机与变速机构直接连接,这样可以减少燃油消耗。
液力变矩器的作用是将发动机的动力输出传递到变速机构。它里面充满了传动油,当与动力输入轴相连接的泵轮转动时,它会通过传动油带动与输出轴相连的涡轮一起转动,从而将发动机动力传递出去。其原理就像一把插电的风扇能够带动一把不插电的风扇的叶片转动一样。
AT自动变速箱每个档位都由一组离合片控制,从而实现变速功能。现在的AT自动变速箱采用电磁阀对离合片进行控制,使得系统更简单,可靠性更好。AT自动变速箱的传动齿轮和手动变速箱的传动齿轮并不相同。AT自动变速箱采用的是行星齿轮组实现扭矩的转换。

AT自动变速箱控制电脑通过电信号控制电磁阀的动作,从而改变变速箱油在阀体油道的走向。当作用在多片式离合片上的油压达到致动压力时,多片式离合片接合从而促使相应的行星齿轮组输出动力。

行星齿轮组包括行星架、齿圈以及太阳轮。当上面提到的三个部件中的一个被固定后,动力便会在其他两个部件之间传递。


CVT无级变速箱的主要部件是两个滑轮和一条金属带,金属带套在两个滑轮上。滑轮由两块轮盘组成,这两片轮盘中间的凹槽形成一个V形,其中一边的轮盘由液压控制机构控制,可以视不同的发动机转速,进行分开与拉近的动作,V形凹槽也随之变宽或变窄,将金属带升高或降低,从而改变金属带与滑轮接触的直径,相当于齿轮变速中切换不同直径的齿轮。两个滑轮呈反向调节,即其中一个带轮凹槽逐渐变宽时,另一个带轮凹槽就会逐渐变窄,从而迅速加大传动比的变化。



当汽车慢速行驶时,可以令主动滑轮的凹槽宽度大于被动滑轮凹槽,主动滑轮的金属带圆周半径小于被动滑轮的金属带圆周半径,即小圆带大圆,因此能传递较大的转矩;当汽车逐渐转为高速时,主动滑轮的一边轮盘向内靠拢,凹槽宽度变小迫使金属带升起,直至最高顶端,而被动滑轮的一边轮盘刚好相反,向外移动拉大凹槽宽度迫使金属带降下,即主动滑轮金属带的圆周半径大于被动滑轮金属带的圆周半径,变成大圆带小圆,因此能保证汽车高速行驶时的速度要求。


手动挡汽车在换挡时,离合器在分离和接合之间存在动力传递暂时中断的现象。这对于一般的民用车影响不大,但对于争分夺秒的赛车来说,会极大地影响成绩。双离合变速箱能够消除换挡时动力传递的中断现象,缩短换挡时间,同时换挡更加平顺。

现在就来说说双离合变速箱吧,以大众的DSG为例。


大众6速DSG双离合变速箱,两个离合器与变速箱装配在同一机构内,其中一个离合器(1)负责挂1、3、5和倒挡;另一个离合器(2)负责挂2、4、6挡。当驾驶员挂上1挡起步时,换挡拨叉同时挂上1挡和2挡,但离合器1结合,离合器2分离,动力通过1挡的齿轮输出动力,2挡齿轮空转。当驾驶员换到2挡时,换挡拨叉同时挂上2挡和3挡,离合器1分离的同时离合器2结合,动力通过2挡齿轮输出,3挡齿轮空转。其余各档位的切换方式均与此类似。这样就解决了换挡过程中动力传输中断的问题。



大众7速DSG双离合变速箱的工作原理图,其工作原理与6速类似。离合器1负责控制1、3、5、7挡;离合器2负责控制2、4、6和倒档。


发动机输出的动力,是要经过一系列的动力传递装置才到达驱动轮的。发动机到驱动轮之间的动力传递机构,称为汽车的传动系,主要由离合器、变速器、传动轴、主减速器、差速器以及半轴等部分组成。

先经过离合器,由变速器变扭和变速后,经传动轴把动力传递到主减速器上,最后通过差速器和半轴把动力传递到驱动轮上。


汽车传动系的布置形式与发动机的位置及驱动形式有关,一般可分为前置前驱、前置后驱、后置后驱、中置后驱四种形式。

下面就来说说驱动方式吧

● 前置前驱,

前置前驱(FF)是指发动机放置在车的前部,并采用前轮作为驱动轮。现在大部分轿车都采取这种布置方式。由于发动机布置在车的前部,所以整车的重心集中在车身前段,会有点“头重尾轻”。但由于车体会被前轮拉着走的,所以前置前驱汽车的直线行驶稳定性非常好。

另外,由于发动机动力经过差速器后用半轴直接驱动前轮,不需要经过传动轴,动力损耗较小,适合小型车。不过由于前轮同时负责驱动和转向,所以转向半径相对较大,容易出现转向不足的现象。


● 前置后驱,

前置后驱(FR)是指发动机放置在车前部,并采用后轮作为驱动轮。FR整车的前后重量比较均衡,拥有较好的操控性能和行驶稳定性。不过传动部件多、传动系统质量大,贯穿乘坐舱的传动轴占据了舱内的地台空间。

FR汽车拥有较好的操控性、稳定性、制动性,现在的高性能汽车依然喜欢采用这种布置行形式。


● 后置后驱,

后置后驱(RR)是指将发动机放置在后轴的后部,并采用后轮作为驱动轮。由于全车的重量大部分集中在后方,且又是后轮驱动,所以起步、加速性能都非常好,因此超级跑车一般都采用RR方式。


● 中置后驱,

中置后驱(MR)是指将发动机放置驾乘室与后轴之间,并采用后轮作为驱动轮。MR这种设计已是高级跑车的主流驱动方式。由于将车中运动惯量最大的发动机置于车体中央,整车重量分布接近理想平衡,使得MR车获得最佳运动性能的保障。

MR车由于发动机中置,车厢比较窄,一般只有两个座位,而且发动机离驾驶人员近,噪声也比较大。当然,追求汽车驾驶性能的人也不会在乎这些的。


● 四驱系统,

四轮驱动,顾名思义就是采用四个车轮作为驱动轮,简称四驱。(英文是4 Wheel Drive,简称4WD)。四轮驱动汽车有两大优势,一是提高通过性,二是提高主动安全性。

四驱系统又可分为:分时四驱,适时四驱,全时四驱。

由于四驱汽车,四个轮子都可以驱动汽车,如果在一些复杂路段出现前轮或后轮打滑时,另外两个轮子还可以继续驱动汽车行驶,不至于无法动弹。特别是在冰雪或湿滑路面行驶时,更不容易出现打滑现象,比一般的两驱车更稳定。


分时四驱可以简单理解为根据不同路况驾驶员可以手动切换两驱或四驱模式。如在湿滑草地、泥泞、沙漠等复杂路况行驶时,可切换至四驱模式,提高车辆通过性。如在公路上行驶,可切换至两驱模式,避免转向时车辆转向时发生干涉现象,减低油耗等。

适时四驱就是根据车辆的行驶路况,系统会自动切换为两驱或四驱模式,是不需要人为控制的。适时驱动汽车其实跟驾驶两驱汽车没太大的区别,操控简便,而且油耗相对较低,广泛应用于一些城市SUV或轿车上。

适时四驱车的传动系统中,只需从前驱动桥引一根传动轴,并通过一个多片耦合器连接到后桥。当主驱动轮失去抓地力(打滑)后,另外的驱动轮才会被动介入,所以它的响应速度较慢。相对来说,适时四驱车的主动安全性不如全时驱动车高。


全时四驱就是指汽车的四个车轮时时刻刻都能提供驱动力。因为是时时四驱,没有了两驱和四驱之间切换的响应时间,主动安全性更好,不过相对于适时四驱来说,油耗较高。全时四驱汽车传动系统中,设置了一个中央差速器。发动机动力先传递到中央差速器,将动力分配到前后驱动桥。


● 涡轮增压,

涡轮增压大家并不陌生,平时在车的尾部都可以看到诸如1.4T、2.0T等字样,这说明了这辆车的发动机是带涡轮增压的。涡轮增压(Turbocharger)简称Turbo或T。涡轮增压是利用发动机的废气带动涡轮来压缩进气,从而提高发动机的功率和扭矩,使车更有劲。


涡轮增压器主要由涡轮机和压缩机两部分组成,之间通过一根传动轴连接。涡轮的进气口与发动机排气歧管相连,排气口与排气管相连;压缩机的进气口与进气管相连,排气口则接在进气歧管上。到底是怎样实现增压的呢?主要是通过发动机排出的废气冲击涡轮高速运转,从而带动同轴的压缩机高速转动,强制地将增压后的空气压送到气缸中。


涡轮增压主要是利用发动机废气的能量带动压缩机来实现对进气的增压,整个过程中基本不会消耗发动机的动力,拥有良好的加速持续性,但是在低速时涡轮不能及时介入,带有一定的滞后性。


● 涡轮增压,

相对于涡轮增压,机械增压(Supercharger)的原理则有所不同。机械增压主要是通过曲轴的动力带动一个机械式的空气压缩机旋转来压缩空气的。与涡轮增压不同的是,机械增压工作过程中会对发动机输出的动力造成一定程度的损耗。


由于机械增压器是直接由曲轴带动的,发动机运转时,增压器也就开始工作了。所以在低转速时,发动机的扭矩输出表现也十分出色,而且空气压缩量是按照发动机转速线性上升的,没有涡轮增压发动机介入那一刻的唐突,也没有涡轮增压发动机的低速迟滞。但是在发动机高速运转时,机械增压器对发动机动力的损耗也是很大的,动力提升不太明显。

现在还有双增压哦。

● 涡轮增压,

双增压发动机,顾名思义就是指一台发动机上装有两个增压器。如一台发动机上采用两个涡轮增压器,则称为双涡轮增压发动机。如宝马3.0L直列六缸发动机,采用的就是两个涡轮增压器。

针对废气涡轮增压的涡轮迟滞现象,排气管上并联两只同样的涡轮(每三个缸一组连接一个涡轮增压器),在发动机低转速的时候,较少的排气即可驱动涡轮高速旋转以产生足够的进气压力,减小涡轮迟滞效应。


涡轮增压器在低转速时有迟滞现象,但高速时增压值大,发动机动力提升明显,而且基本不消耗发动机的动力;而机械增压器,是发动机运转直接驱动涡轮,没有涡轮增压的迟滞,但是是损耗部分动力、增压值较低。那把它们结合一起就岂不是可以优势互补了?

那就比如说如大众高尔夫GT上装备的1.4升TSI发动机,设计师就把涡轮增压器和机械增压器结合到了一起。将机械增压器安装到发动机进气系统上,涡轮增压器安装在排气系统上,从而保证发动机在低速、中速和高速时都能有较好的增压效果。 


● 柴油机和汽油机的区别,

柴油机和汽油机是汽车上最常见的两种动力装置,因为燃料的不同,柴油机和汽油机工作方式也是有所不同的。主要表现在以下几个方面,首先喷射方式不一样,一般的汽油机(直喷发动机除外)是将汽油与燃料混合后进入气缸,而柴油机是直接将柴油喷入已充满压缩空气的气缸。

其次,点火方式不同。汽油机需要火花塞将混合气点燃,而柴油机是压缩自燃点火。最后,压缩比不同,柴油机的压缩比一般都比汽油机的要大,因此它的膨胀比和热效率比较高,油耗比汽油机要低。


● 什么是制动系统?

大家都知道,汽车的制动系统对我们的行车安全非常重要,行车中如出现制动失灵等故障,后果都将不堪设想。那么汽车的制动系统是如何制动的?为什么会失灵?ABS、ESP系统又是什么?对我们驾驶安全有什么帮助?

作为制动系统,作用当然就是让行驶中的汽车按我们的意愿进行减速甚至停车。工作原理就是将汽车的动能通过摩擦转换成热能。汽车制动系统主要由供能装置、控制装置、传动装置和制动器等部分组成,常见的制动器主要有鼓式制动器和盘式制动器。


鼓式制动器

鼓式制动器主要包括制动轮缸、制动蹄、制动鼓、摩擦片、回位弹簧等部分。主要是通过液压装置是摩擦片与岁车轮转动的制动鼓内侧面发生摩擦,从而起到制动的效果。

在踩下刹车踏板时,推动刹车总泵的活塞运动,进而在油路中产生压力,制动液将压力传递到车轮的制动分泵推动活塞,活塞推动制动蹄向外运动,进而使得摩擦片与刹车鼓发生摩擦,从而产生制动力。

鼓式制动器是工作在一个相对封闭的环境,制动过程中产生的热量不易散出,频繁制动影响制动效果。不过鼓式制动器可提供很高的制动力,广泛应用于重型车上。

盘式制动器

盘式制动器也叫碟式制动器,主要由制动盘、制动钳、摩擦片、分泵、油管等部分构成。盘式制动器通过液压系统把压力施加到制动钳上,使制动摩擦片与随车轮转动的制动盘发生摩擦,从而达到制动的目的。

与封闭式的鼓式制动器不同的是,盘式制动器是敞开式的。制动过程中产生的热量可以很快散去,拥有很好的制动效能,现在已广泛应用于轿车上。



通风制动盘

制动过程实际上是摩擦力将动能转化为热能的过程,如制动器的热量不能及时散出,将会影响其制动效果。为了进一步提升制动效能,通风制动盘应运而生。通风刹车盘内部是中空的或在制动盘打很多小孔,冷空气可以从中间穿过进行降温。

从外表看,它在圆周上有许多通向圆心的洞空,它利用汽车在行驶当中产生的离心力能使空气对流,达到散热的目的,因此比普通实心盘式散热效果要好许多。



陶瓷制动盘

陶瓷制动盘相对于一般的刹车盘具有重量轻、耐高温耐磨等特性。普通的刹车盘在全力制动下容易高热而产生热衰退,制动性能会大打折扣,而陶瓷刹车盘有很好的抗热衰退性能,其耐热性能要比普通制动盘高出许多倍。

陶瓷制动盘在制动最初阶段就能产生最大的制动力,整体制动要比传统制动系统更快,制动距离更短。当然,它的价格也是非常昂贵的,多用于高性能跑车上。


● 紧急制动辅助系统(EBA)

紧急制动辅助系统,其作用是当行车电脑ECU发现驾驶员进行紧急制动时,可在瞬间自动加大制动力,以防止因为司机制动力不足而发生险情。

当传感器接受到的松油门踩制动的时间、踩制动的速率和力度都符合要求时,ECU会马上启动紧急制动措施,在短短几毫秒之内把制动力全部发挥出来,这比驾驶员把制动踏板踩到底的时间要快得多,这样可以缩短在紧急制动情况下的刹车距离。


ABS(Anti-locked Braking System)即防抱死刹车系统。它是一种具有防滑、防锁死等优点的汽车安全控制系统,已广泛运用于汽车上。ABS主要由ECU控制单元、车轮转速传感器、制动压力调节装置和制动控制电路等部分组成。

制动过程中,ABS控制单元不断从车轮速度传感器获取车轮的速度信号,并加以处理,进而判断车轮是否即将被抱死。ABS刹车制动其特点是当车轮趋于抱死临界点时,制动分泵压力不随制动主泵压力增加而增高,压力在抱死临界点附近变化。

如判断车轮没有抱死,制动压力调节装置不参加工作,制动力将继续增大;如判断出某个车轮即将抱死,ECU向制动压力调节装置发出指令,关闭制动缸与制动轮缸的通道,使制动轮的压力不再增大;如判断出车轮出现抱死拖滑状态,即向制动压力调节装置发出指令,使制动轮缸的油压降低,减少制动力。


车身电子稳定系统(Electronic Stability Program,简称ESP),是博世(Bosch)公司的专利。其他公司也有研发出类似的系统,如宝马的DSC、丰田的VSC等等。

ESP系统其实是ABS(防抱死系统)和ASR(驱动轮防滑转系统)功能上的延伸,可以说是当前汽车防滑装置的最高形式。主要由控制总成及转向传感器(监测方向盘的转向角度)、车轮传感器(监测各个车轮的速度转动)、侧滑传感器(监测车体绕纵轴线转动的状态)、横向加速度传感器(监测汽车转弯时的离心力)等组成。控制单元通过这些传感器的信号对车辆的运行状态进行判断,进而发出控制指令。


当汽车快速行驶或者转向时,产生的横向作用力会使汽车不稳定,易发生事故,而ESP系统可以将这种情况防患于未然。那么这套系统是如何做到的呢?

当车辆前面突然出现障碍物时,驾驶员必须快速向左转弯,此时转向传感器将此信号传递到ESP控制总成,侧滑传感器和横向加速度传感器发出汽车转向不足的信号,这就意味着汽车将会直接冲向障碍物。那么这时ESP系统将会瞬间将后轮紧急制动,这样就能产生转向需要的反作用力,使汽车按照转向意图行驶。


如果在汽车转向后行驶的左车道上反向转向时,汽车会有转向过度的危险,向右的扭矩过大,以至于车尾甩向左侧。这时ESP系统会将左前轮制动,扭矩就会减小,使得汽车顺利转向。


本贴到此就基本结束了,感谢各位吧友的支持与顶贴!

当然,本贴还有很多不足和没有写到的地方,欢迎大家指出和补充,以便我们能更好的学习和积累汽车知识。

很抱歉,该主帖尚未满足精华帖15张图片要求,不能予以精华,更多精华标准点击此处查看
修改主帖
内容系网友发布,涉及安全和抄袭问题属于网友个人行为,不代表汽车之家观点,可联系客服删除。
举报
IP
回复
返回列表
1 2
前往
/2页
确认

更多> 精选帖子

更多> 精选视频

扫码下载
汽车之家APP

随时获取
最新汽车资讯